Microfluidic chip technology integrates the basic operational units of sample preparation, reaction, separation, detection and more involved in biological, chemical and medical analysis processes onto a micro-scale chip to automatically accomplish the entire analysis process.
This technology includes platinum resistance chips, pressure sensor chips, electrochemical sensor chips, micro/nano-reactor chips, microfluidic fuel cell chips, micro/nano-fluid filtration chips, and more.
Microfluidic chips are currently the main focus of development in micro-total analysis systems
Microfluidic chip analysis uses a chip as an operational platform, while relying on analysis chemistry and micro-electro-mechanical processing technology, with micro-channel networks as structural features and life sciences as the primary application objective. Its goal is to integrate all the functions of the entire laboratory, including sampling, dilution, reagent addition, reaction, separation, detection, etc. on a microchip, which can be reused multiple times.
Microfluidic chips are the main platform for implementing microfluidic technology
The device is mainly characterized by its effective structure for accommodating fluid (channels, reaction chambers and other functional components), which is at least on a micron scale on one dimension. Due to the micron-level structure, fluid exhibit unique characteristics and performance different from those at the macro scale, leading to unique analytical performance.
Characteristics and advantages of microfluidic chips
Microfluidic chips have controllable liquid flow, minimal consumption of samples and reagents, and speeds up to tens or even hundreds of times faster than traditional analyses. They can analyze hundreds of samples in just a few minutes or even shorter time and can realize sample pre-processing and the entire analysis process online.
The ultimate goal of its application is to achieve the chip laboratory of a micro-total analysis system, and its current focus of development is primarily in the field of life sciences. Innovation in this field is mainly focused on separation and detection systems. However, there are many weak areas related to how to introduce actual sample analysis into microfluidic chips, such as sample introduction, sample exchange, pre-treatment, etc. Its development relies on interdisciplinary development.
The bio-chips widely believed by the media, such as gene chips and protein chips, are only special types of microfluidic chips with zero micro-flow, with very limited functionality. Microfluidic chips have a wider range of types, functions, and applications, and can be developed into analytical systems such as bio-computing, gene and protein sequencing, mass spectrometry and chromatography, thus becoming an extremely important technological basis for systems biology, especially systems genetics.
Struggling to Lose Weight? Obesity Genetic Test May Reveal WhyNovember 13, 2024Obesity Genetic Test: Making Your Weight Loss Efforts More EffectiveWhy do some people find it very difficult to lose weight? And why do some people rarely gain weight regardless of how much they eat?...view
Why Do You Need Chromosomal Microarray Analysis?April 4, 2023Chromosomes are genetic material and the carriers of genes. The human body has 23 pairs of chromosomes, with 22 pairs being common to both sexes and called autosomes. The other pair determines sex and...view
CapitalBio: Advancing Breast Cancer Research with Microarray ScannersFebruary 7, 2024Introduction to CapitalBio and BRCA Gene ResearchCapitalBio, a global leader in biotechnology, is making significant strides in breast cancer research with its advanced microarray scanners. These inst...view
The Impact of DNA Genome Sequencing on Cancer Research and TreatmentJuly 18, 2024Cancer remains one of the most formidable challenges in medical science. As we continually seek innovative solutions to understand and combat this complex disease, DNA genome sequencing has proven to ...view