Preimplantation testing refers to the chromosomal or specific gene testing of embryos before implantation. This is done to select embryos that do not carry genetic defects for implantation into the uterus. This allows couples facing high genetic risks during pregnancy to avoid natural miscarriages, prenatal termination, or birth defects caused by genetic diseases. The ultimate goal is to achieve healthy offspring.
The Principle of Preimplantation Testing
By using high-throughput sequencing technology (Next Generation Sequencing, NGS), single-cell whole-genome amplification products are sequenced to obtain thousands of reads (base sequences). These are then compared to reference sequences of the human genome to map the reads onto the genome.
By selecting windows of a certain length, reads within these windows can be counted, thereby serving as the signal value (digital signal) for that window. This signal tends to stabilize as the sequencing depth and window size increase. These windows with stable signal values are the basis for determining chromosomal abnormalities. For a diploid region (or an entire chromosome), if the signal value is 1.5 times the normal value, it can be determined as a duplication (or triploid). If it is 0.5 times the normal value, it can be determined as a deletion (or haploid).
Benefits of Preimplantation Testing
Increased Clinical Pregnancy and Live Birth Rates
Preimplantation testing screens embryos for genetic abnormalities before implantation, thereby excluding embryos carrying genetic diseases or chromosomal anomalies. This helps in selecting healthy embryos for transfer, increasing the chances of successful pregnancy.
Reduced Risk of Early Miscarriage
Preimplantation testing can effectively identify embryos with chromosomal abnormalities, such as numerical or structural anomalies. By excluding these embryos, the risk of transferring unhealthy embryos into the uterus is avoided, significantly reducing the risk of early miscarriage.
Reduction in the Birth of Children with Genetic Defects
Preimplantation testing helps in screening embryos that carry genetic defects or high-risk genes, preventing the implantation of embryos with hereditary diseases such as Thalassemia, Cystic Fibrosis, or Down Syndrome.
Increased Success Rate of Single Embryo Pregnancies
Gene screening before embryo implantation can also effectively increase the success rate of single embryo pregnancies. By selecting the healthiest embryo among multiple embryos, complications associated with multiple pregnancies, such as premature birth, low birth weight, and pregnancy-induced hypertension, can be avoided.
Alcohol Metabolite Test Reveals Your True Drinking CapacityNovember 13, 2024Significance of Alcohol Metabolite TestIndicates an individual's ability to metabolize and detoxify alcohol, guiding reasonable and healthy drinkingReveals a high-risk tendency for major diseasesM...view
In Vitro Diagnostic Design: What are LDT and IVD?April 4, 2023Medical professionals usually rely on various tools to diagnose conditions and guide treatment decisions. The most commonly used is in vitro diagnostics (IVD) technology. Patients may receive or decli...view
What Test is Used for HLA Typing?March 11, 2024In the intricate world of immunogenetics, Human Leukocyte Antigen (HLA) typing emerges as a cornerstone, pivotal for a myriad of applications ranging from organ transplantation to the understanding of...view
What is IVF Preimplantation Genetic Testing (PGT)?June 20, 20221. What is Preimplantation Genetic Testing (PGT)?Preimplantation genetic testing (PGT) is a method of screening some cells from an embryo and detecting related genetic and chromosomal disorders. This ...view
Application of Genome Sequencing Technology in Newborn ScreeningNovember 13, 2024Newborn screening is a successful public health initiative that prevents diseases and reduces mortality through early diagnosis and disease management. In the era of precision medicine, the expansion ...view